Skip Navigation
Skip to contents

CPP : Cardiovascular Prevention and Pharmacotherapy

Sumissioin : submit your manuscript
SEARCH
Search

Search

Page Path
HOME > Search
1 "Soon Hyo Kwon"
Filter
Filter
Article category
Keywords
Publication year
Authors
Funded articles
Original Article
Development of a Predictive Model for Glycated Hemoglobin Values and Analysis of the Factors Affecting It
HyeongKyu Park, Da Young Lee, So young Park, Jiyoung Min, Jiwon Shinn, Dae Ho Lee, Soon Hyo Kwon, Hun-Sung Kim, Nan Hee Kim
Cardiovasc Prev Pharmacother. 2021;3(4):106-114.   Published online October 31, 2021
DOI: https://doi.org/10.36011/cpp.2021.3.e14
  • 1,630 View
  • 35 Download
Abstract PDF
Background
Glycated hemoglobin (HbA1c), which reflects the patient's blood sugar level, can only be measured in a hospital setting. Therefore, we developed a model predicting HbA1c using personal information and self-monitoring of blood glucose (SMBG) data solely obtained by a patient.
Methods
Leave-one-out cross-validation (LOOCV) was performed at two university hospitals. After measuring the baseline HbA1c level before SMBG (Pre_HbA1c), the SMBG was recorded over a 3-month period. Based on these data, an HbA1c prediction model was developed, and the actual HbA1c value was measured after 3 months. The HbA1c values of the prediction model and actual HbA1c values were compared. Personal information was used in addition to SMBG data to develop the HbA1c predictive model.
Results
Thirty model training sessions and evaluations were conducted using LOOCV. The average mean absolute error of the 30 models was 0.659 (range, 0.005–2.654). Pre_HbA1c had the greatest influence on HbA1c prediction after 3 months, followed by post-breakfast blood glucose level, oral hypoglycemic agent use, fasting glucose level, height, and weight, while insulin use had a limited effect on HbA1c values.
Conclusions
The patient's SMBG data and personal information strongly influenced the HbA1c predictive model. In the future, it will be necessary to develop sophisticated predictive models using large samples for stable SMBG in patients.

CPP : Cardiovascular Prevention and Pharmacotherapy